ROCK2 and MYLK variants under hypobaric hypoxic environment of high altitude associate with high altitude pulmonary edema and adaptation

نویسندگان

  • Priyanka Pandey
  • Ghulam Mohammad
  • Yogendra Singh
  • MA Qadar Pasha
چکیده

OBJECTIVE To date, a major class of kinases, serine-threonine kinase, has been scantly investigated in stress-induced rare, fatal (if not treated early), and morbid disorder, high altitude pulmonary edema (HAPE). This study examined three major serine-threonine kinases, ROCK2, MYLK, and JNK1, along with six other genes, tyrosine hydroxylase, G-protein subunits GNA11 and GNB3, and alpha1 adrenergic receptor isoforms 1A, 1B, and 1D as candidate gene markers of HAPE and adaptation. METHODS For this, 57 variants across these nine genes were genotyped in HAPE patients (n=225), HAPE controls (n=210), and highlanders (n=259) by Sequenom MS (TOF)-based MassARRAY® platform using iPLEX™ Gold technology. In addition, to study the gene expression, quantitative real-time polymerase chain reaction was performed in human peripheral blood mononuclear cells of the three study groups. RESULTS A significant association was observed for C allele (ROCK2 single-nucleotide polymorphism, rs10929728) with HAPE (P=0.03) and C, T, and A alleles (MYLK single-nucleotide polymorphisms, rs11717814, rs40305, and rs820336) with both HAPE and adaptation (P=0.001, P=0.006, and P=0.02, respectively). ROCK2 88 kb GGGTTGGT haplotype was associated with lower risk of HAPE (P=0.0009). MYLK 7 kb haplotype CTA, composed of variant alleles, was associated with higher risk of HAPE (P=0.0006) and lower association with adaptation (P=1E-06), whereas haplotype GCG, composed of wild-type alleles, was associated with lower risk of HAPE (P=0.001) and higher association with adaptation (P=1E-06). Haplotype-haplotype and gene-gene interactions demonstrated a correlation in working of ROCK2 and MYLK. CONCLUSION The data suggest the association of ROCK2 with HAPE and MYLK with HAPE and adaptation in Indian population. The outcome has provided new insights into the physiology of HAPE and adaptation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chronic Mountain Sickness (Cms) Misdiagnosed As High Altitude Cerebral Edema (Hace) At Extreme Altitude (6400 M/21000 Ft)

Introduction: Chronic mountain sickness (CMS) represents a syndrome of secondary polycythemia along with thrombocytopenia, altered hemorheology, pulmonary and systemic hypertension, and congestive heart failure, occurring due to hypobaric hypoxia-anoxia-induced erythropoiesis reported in both native mountain residents and new climbers after prolonged stays at high and extreme a...

متن کامل

Cerebral Venous Sinus Thrombosis Masquerading as High Altitude Cerebral Edema at Extreme Altitude

Introduction: Extreme altitude travel has gained popularity globally for adventurous, scientific, and military endeavors. Cerebral venous sinus thrombosis (CVST) at extreme altitude is a rare, covert, and emergent condition requiring immediate intervention. Case Presentation: A case of CVST masqueraded as high altitude cerebral edema (HACE) at 6700 m/22000 ft i...

متن کامل

Lungs at high-altitude: genomic insights into hypoxic responses.

Hypobaric hypoxia at high altitude (HA) results in reduced blood arterial oxygen saturation, perfusion of organs with hypoxemic blood, and direct hypoxia of lung tissues. The pulmonary complications in the cells of the pulmonary arterioles due to hypobaric hypoxia are the basis of the pathophysiological mechanisms of high-altitude pulmonary edema (HAPE). Some populations that have dwelled at HA...

متن کامل

Short-term responses of the kidney to high altitude in mountain climbers.

In high-altitude climbers, the kidneys play a crucial role in acclimatization and in mountain sickness syndromes [acute mountain sickness (AMS), high-altitude cerebral edema, high-altitude pulmonary edema] through their roles in regulating body fluids, electrolyte and acid-base homeostasis. Here, we discuss renal responses to several high-altitude-related stresses, including changes in systemic...

متن کامل

The proteome of Hypobaric Induced Hypoxic Lung: Insights from Temporal Proteomic Profiling for Biomarker Discovery

Exposure to high altitude induces physiological responses due to hypoxia. Lungs being at the first level to face the alterations in oxygen levels are critical to counter and balance these changes. Studies have been done analysing pulmonary proteome alterations in response to exposure to hypobaric hypoxia. However, such studies have reported the alterations at specific time points and do not ref...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2015